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Transverse motion of a disk through a rotating 
viscous fluid 

By JOHN P. TANZOSH AND H. A. STONE 
Division of Applied Sciences, Harvard University, Cambridge, MA 02138, USA 

(Received 27 June 1994 and in revised form 19 June 1995) 

A thin rigid disk translates edgewise perpendicular to the rotation axis of an un- 
bounded fluid undergoing solid-body rotation with angular velocity R. The disk face, 
with radius a, is perpendicular to the rotation axis. For arbitrary values of the Taylor 
number, F = Qa2/v, and in the limit of zero Reynolds number We, the linearized 
viscous equations reduce to a complex-valued set of dual integral equations. The 
solution of these dual equations yields an exact representation for the velocity and 
pressure fields generated by the translating disk. 

For large rotation rates S >> 1, the O(1) disturbance velocity field is confined to a 
thin O(S- ' / 2 )  boundary layer adjacent to the disk. Within this boundary layer, the 
flow field near the disk centre undergoes an Ekman spiral similar to that created by 
a nearly geostrophic flow adjacent to an infinite rigid plate. Additionally, flow within 
the boundary layer drives a weak O ( S - ' / * )  secondary flow which extends parallel to 
the rotation axis and into the far field. This flow consists of two counter-rotating 
columnar eddies, centred over the edge of the disk, which create a net in-plane flow 
at an angle of 45" to the translation direction of the disk. Fluid is transported axially 
toward/away from the disk within the core of these eddies. The hydrodynamic force 
(drag and lift) varies as O ( S ' / 2 )  for S >> 1; this scaling is consistent with the 
viscous stresses created in the Ekman boundary layer. Additionally, an approximate 
expression, suitable for all Taylor numbers, is given for the hydrodynamic force on 
a disk translating broadside along the rotation axis and edgewise transverse to the 
rotation axis. 

1. Introduction 
There exist few analytical solutions describing particle motion transverse to the 

rotation axis of a fluid in solid-body rotation. Such motions occur in centrifugal 
separations and swirling flows of particle-laden fluids. The analysis of such problems 
is difficult owing to the three-dimensional character of the disturbance flow field 
created by a moving particle. To further the theoretical understanding in this problem 
area, we present an exact solution for the velocity and pressure fields created by the 
edgewise translation of a circular disk transverse to the rotation axis. 

Consider a thin disk of radius a translating with velocity U p  through a fluid in 
solid-body rotation with angular velocity s2. The plane of the disk is perpendicular 
to the rotation axis, and the disk translates in the edgewise direction (figure 1). The 
fluid motion is characterized by two dimensionless parameters : the Reynolds number 
Be = lUpla/v and the Taylor number 9 = s2a2/v, where v denotes the kinematic 
viscosity of the fluid. We study the limit where the Reynolds number W e  << 1, so that 
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FIGURE 1. Disk translating edgewise through an unbounded fluid undergoing solid-body rotation 
with angular velocity Q. The z-axis is aligned parallel to the rotation axis, and the disk translates 
along the x-direction. 

Investigation Disk motion 
Ray (1936) 
Davis (1991; 1993) 
Moore & Saffman (1969a,b) 
Hocking et al. (1979) 
Vedensky & Ungarish (1994) 
Ungarish & Vedensky (1995) 
Here 

broadside/edgewise, in-plane rotation; F = 0 
broadside/edgewise translation near walls; F = 0 
broadside/edgewise; rotating fluids Y >> 1 
broadside; in a long container F >> 1 
broadside; bounded/unbounded; all F 

edgewise motion; unbounded; all F 

TABLE 1. Research related to the edgewise translation of a disk in a Stokes (F = 0) or rotating 
viscous flow and formulated using dual integral equations. 

the convective acceleration effects may be neglected, and obtain an exact solution, 
valid for any Taylor number, for the linearized equations governing rotating viscous 
flows. To our knowledge, this is the first solution to describe transverse particle 
motion at arbitrary rotation rates. 

The mathematical procedures employed here reduce the linearized governing equa- 
tions to a set of dual integral equations. Table l summarizes related research in 
which dual integral equation formulations describe the motion of a disk either in a 
Stokes flow or through a fluid in solid-body rotation. In particular, Ray (1936) and 
Davis (1991) analysed the edgewise translation of a circular disk in an unbounded 
Stokes flow (F = 0); Moore & Saffman (1969a,b) considered broadside and edgewise 
translation of a disk through a rotating fluid in the rapid rotation limit (F >> 1) 
by examining the appropriate boundary layer equations ; and Vedensky & Ungarish 
(1994) and Ungarish & Vedensky (1995) investigated broadside motion along the 
rotation axis through unbounded and bounded geometries at arbitrary Taylor num- 
ber. Tanzosh (1994) and Tanzosh & Stone (1995) present a general approach for 
analysing a variety of disk motions including the Stokes flow problem, the transverse 
translation of a disk perpendicular to the rotation axis, the broadside motion of a 
disk parallel to the rotation axis, and the in-plane rotation of a disk along an axis 
parallel to the rotation axis. 

Solid-body rotation produces a number of interesting and often surprising effects 
on the structure of the flow field caused by transverse particle motion. For fluids 
in rapid rotation so that F >> 1 but = IU,(/SZa << 1, the flow field tends 
toward having a two-dimensional structure. The mathematical statement describing 
this inviscid flow limit is the Taylor-Proudman theorem, which states that the fluid 
velocity II satisfies s2 - Vu = 0. Thus, disturbances generated by particle motion, or 
perhaps by topological disturbances to an imposed flow, have long-range effects in 
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F~GURE 2. Geometric length scales of a particle translating between rigid walls in a fluid 
undergoing solid-body rotation. 

directions parallel to the rotation axis. The classic example of this effect is the Taylor 
column in which a circumscribing column of fluid accompanies a translating particle. 
The review articles by Hide (1966), Lighthill (1966) and Bush, Stone & Tanzosh 
(1995) and the text by Greenspan (1968) discuss some of the physical features of this 
type of motion. 

Table 2 summarizes experimental work related to the motion of a particle trans- 
verse to the rotation axis. The experiments demonstrate that in rapidly rotating 
fluids, translating ‘fat bodies’ tend to block fluid from entering a cylindrical region 
circumscribing the particle and extending parallel to the rotation axis (e.g. Taylor 
1923; Hide & Ibbetson 1968). This phenomenon is termed Taylor blocking. ‘Thin 
objects’, however, do not block the flow (see experiments by Maxworthy 1969 and 
Vaziri & Boyer 1971); instead, streamlines pass through the circumscribing cylinder 
at a deflected angle described analytically by Moore & Saffman (1  969a). 

Hide & Ibbetson (1966) recognized that Taylor blocking arises when the length of 
the particle in the direction of the rotation axis is sufficiently large. In the absence of 
rotation, translating ‘fat bodies’ create velocity variations in all directions. However, in 
rapidly rotating flows, velocity gradients parallel to the rotation axis are inhibited, and 
instead fluid is blocked from entering a cylindrical region circumscribing and moving 
with the particle. ‘Thin bodies’, on the other hand, displace a small fluid volume and 
so may not create a sufficiently strong vertical disturbance for the Taylor-Proudman 
constraint to modify the flow field in such a dramatic manner. 

Hide & Ibbetson (1966) argued that convective inertial influences, whose magnitude 
relative to the Coriolis force is measured by the Rossby number B,, = Be F-’, of 
sufficient strength will disrupt Taylor blocking. Specifically, in a bounded flow, Taylor 
blocking should occur provided the ratio of the height of the particle L to the channel 
depth H (see figure 2) satisfies L/H > a go, where a is an O(1) constant. Hide & 
Ibbetson (1966) also performed experiments which were in reasonable agreement with 
this criterion. We thus might expect that the classic Taylor blocking phenomenon 
may not occur for the transverse motion of an infinitely thin disk, although rotation 
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may still produce disturbance motions with distinctive characteristics (e.g. Moore & 
Saffman 1969~). 

Analytical studies of transverse particle motion may be subdivided into the low 
and high Taylor number limits as summarized in table 3. For F << 1, Herron, Davis 
& Bretherton (1975) used a matched asymptotic analysis to investigate perturbations 
from the Stokes flow base state and so determined the hydrodynamic force on a sphere 
(see $3). The first effects of convective acceleration occur when Be/F1’2 = O(1). Davis 
& Brenner (1986) and Davis (1992) used matched asymptotic expansions to study 
these inertial effects in the F << 1 limit. 

For F >> 1, the flow field is determined primarily through a balance of the 
pressure gradient and the Coriolis acceleration (geostrophic balance), while viscous 
effects are confined to thin boundary layers. The geostrophic equation is solved in 
regions inside and outside the Taylor column and the two geostrophic solutions are 
then matched through viscous boundary layers along rigid boundaries and through 
viscous shear (Stewartson) layers separating the geostrophic regions. For F >> 1 Jacob 
(1964) investigated flow past a bounded ‘fat body’ and described Taylor blocking. 
Stewartson considered the motion of an ellipsoid in an unbounded geometry (1953) 
as well as a bounded geometry (1967) and also found that Taylor blocking occurs; 
however, in the limit where the ellipsoid approaches a disk of zero thickness, blocking 
disappears and there is no disturbance to the flow field. As Moore & Saffman (19694 
noted, “ ... for a body [disk] of zero thickness lying in the horizontal plane, there 
is no reason to anticipate the formation of a Taylor column in the usual sense, 
and it is impossible to get a picture of the flow field without appealing to viscous 
effects”. They show that flow past a disk moving between two rigid boundaries 
exhibits no blocking, although streamlines passing over the disk are deflected through 
an angle. Finally, small inertial corrections were examined analytically by Ingersol 
(1969) and Vaziri & Boyer (1971) in studies of the flow past thin topographical 
disturbances. 

The work described in this paper spans the low and high Taylor number limits by 
considering the transverse motion of a disk through an unbounded fluid undergoing 
solid-body rotation. Section 2 develops the dual integral equation formulation and 
briefly describes the necessary numerical calculations; details of the derivation are 
given in the Appendix. Section 3 presents results for the velocity field and hydrody- 
namic forces generated by the translating disk. Section 4 provides a short summary 
and interpretation of these results. Further details of the analytical procedures are 
provided in the dissertation of Tanzosh (1994). 

2. Dual integral equation formulation 
We construct an exact solution of the mixed boundary value problem in terms of 

a set of dual integral equations by first expressing the azimuthal dependence 8 of the 
velocity and pressure fields using complex Fourier modes ekie with complex-valued 
weighting functions. Then by using Hankel transforms to eliminate radial deriva- 
tives, a set of coupled ordinary differential equations in the axial (z) component is 
generated. The solutions of these constant-coefficient differential equations introduce 
undetermined functions of the transform variable k ,  which are then specified by the 
boundary conditions. 
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2.1. Formulation of dual integral equations 
The non-dimensional steady equations of motion, in the low Reynolds number limit 
and expressed relative to the rotating coordinate system, are 

30 1 

2YhAu=-Vp+V2u and V.u=O, (2.1) 

where p is the non-dimensional reduced pressure incorporating centrifugal and gravi- 
tational body force terms, and d is a unit vector parallel to the rotation axis. Lengths 
have been scaled by the disk radius a, velocities by the imposed disk speed JU,], and 
pressure by ,ulUpl/a. We use cylindrical coordinates (r,9,z) centred on the disk with 
the z-axis parallel to 0. The disk face (0 < r < 1,z = 0)  is perpendicular to the 
rotation axis and translates in the x-direction with unit velocity u = ex. 

Denoting the velocity field u(r, 9, z )  = (u,, ue, u,), the governing equations are 

with the operator Z-,, defined as 

By representing the velocity and pressure fields as functions of a complex variable, 
we can construct a compact solution procedure valid for arbitrary Y. Combining 
(2.2) +i (2.3), where i2 = -1, results in two equations for u, & iue: 

i2Y(ur + iue) = - - + -- p + 9-1 + -- + - + -- (u, + iue), (2.7) 
(:r iio) ( a2 a z 2  a2 r 2 a e  2i a 1 

Because u,,ug and p are real functions, equation (2.8) is the complex conjugate of 
(2.7). 

The trigonometric form of the imposed velocity on the disk surface, (ur,  ue, u,) = 
(cos 8, - sin 9,0), and the linearity of the governing equations imply that the azimuthal 
dependence of the velocity and pressure fields away from the disk may be represented 
using the complex-valued Fourier modes e*”. We note that Tanzosh (1994) adopted 
a general Fourier mode expansion eine to analyse other disk motions. For example, 
the broadside translation or in-plane rotation of a disk corresponds to n = 0; the 
edgewise translation or out-of-plane rotation corresponds to n = 1. (This approach is 
similar to that of Happel & Brenner 1983, pp. 72-78, who use an expansion in sinn9 
and cosn9 to describe particle motion in a Stokes flow.) Hence, we write 

ur + iue = ~ - l ( r , z )  epic + Ul(r,z)  eie, (2.9) 
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p = P ( r , z )  e-ie + P(r,z) eie, (2.10) 

u, = W(r, z )  e-ie + W(r,  z )  eie, (2.11) 

where the complex functions U-1, U1, P and W are related through the momentum 
and continuity equations, and an overbar represents the complex conjugate of a 
function. By construction, p and uz are real functions. 

Substituting the expressions (2.9)-(2.11) into the governing equations (2.4)-(2.8) 
and simplifying results in four equations for the four complex coefficients Ul(r , z ) ,  
U-l(r,z) ,  P(r,z) and W(r,z): 

o=--+  9 - 1 + -  w ,  
aP az ( aa::2) 

a ~ ,  aw a 
ar a r  a Z  

+ 2-. o = r-2- (r2U1) + - 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Hankel transforms are used to convert the partial differential equations (2.12)- 
(2.15) to ordinary differential equations in z .  The Hankel transform Hn of order n 
and wavenumber k along with the inverse transform are defined by, 

@(k) = Xn[6(r);k] = r4(r)Jn(kr)dr (2.16) 

(2.17) + ( r )  = H;’[@(k); r ]  = 
Irn 
Lrn k @(k) Jn(kr) dk. 

We use script characters to define the appropriate Hankel transform variables: 

(2.18) 
(2.19) 
(2.20) 

Transforming the governing equations by taking Xo of the complex conjugate of 
(2.12), 21 of (2.14) and (2.15), and 3 f 2  of (2.13), and combining the resulting 
equations yields a sixth-order constant-coefficient ordinary differential equation for 
v:  

0 = (g2 + 4 F 2 ) W ”  - k29*W = g3W + 4 F 2 W ”  (2.21) 

with the following relations for 4 2 1 ,  %-I and 9: 

(2.22) 

(2.23) 

i 2Y(%1 + %-1) = 2kY + 9(42’ - qPl), (2.24) 
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where we have defined 

()’=& d and 9 = - - - - k  d2 2 

dz2 
(2.25) 

Thus the motion of a disk at arbitrary Taylor number is completely described by (i) 
solving (2.21) for W, (ii) solving (2.22)-(2.24) for 8, and %-I, (iii) taking inverse 
Hankel transforms, and (iv) applying the boundary conditions to explicitly determine 
the unknown functions. 

For this geometry, we exploit symmetry and consider only the field in the half-space 
z 2 0. For Y < 1 and z = 0 we enforce u = ex which requires 

(2.26) 

For r > 1 and z = 0, the velocity u and traction e,.T from the upper half-plane 
z 2 0 must match the field from the lower half-plane z d 0 (7 denotes the stress 
tensor). Since the disk translates in its own plane, symmetry requires U-e, = 0 and 
e, T - t = 0 along z = 0 for r > 1, where e, is normal to the z = 0 plane, and t = ex 
or ey are unit vectors tangent to this plane. These boundary conditions lead to 

W = 0 (2.27) 

Assuming the fields decay as z -+ co, the solution of (2.21), in the half-space z 2 0, 
introduces three complex-valued functions A1 (k) ,  A2(k) and A3(k). These functions are 
determined through the boundary conditions in the plane of the disk. After taking the 
appropriate inverse Hankel transforms we arrive back at the complex-valued physical 
space variables, U-1, U1, W and P :  

- 
U-1 = 1, U1 = W = 0 for Y < 1, z = 0. 

- 
UL, = U1’ = 0, for r > 1, z = 0. 

(2.28) 

(2.29) 

3 - -2 
S j ( S j  - k2 + i2F)  - 

Aj(k) e-’j’ J&r) dk, (2.31) 

where +Sj ( j  = 1,2,3) are the six roots of the polynomial 

(Sf - k2)3 + 4Y2Sj2 = 0 with Re(Sj) 2 0. (2.32) 

The characteristic equation (2.32) admits one pair of real roots, labelled +S,, and 
two pairs of complex-conjugate roots -&32 and fS3 = kZ2. The roots are labelled to 
ensure that the fields (2.28)-(2.31) decay at infinity. 

Along z = 0, the boundary condition is W = 0 for all r and implies that A1 = 
-(&+A3). It is convenient to introduce two new unknown functions Y1 and Y2 which 
are linear combinations of A2 and A3, and chosen so that the boundary conditions 
for r > 1 have a simple form given by (2.34) below. The details of this rearrangement 
are described in the Appendix. 
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equations for the complex-valued unknown functions Y1 and Y2 which satisfy 
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The boundary conditions on z = 0 for U-1 and U1 result in coupled dual integral 

for r < 1, 

(2.33) 
i 

- 
U-l(r,O) : -1 = iW [ C l l ( k , O )  ' Y l ( k )  + C12(k,O) Y2(k)] J o w l  dk 

Ul(r,O) : o = Lrn [ m ( k , 0 )  y l ( k )  + C 2 2 ( k , 0 )  ~ 2 i k )  1 J ~ W )  dk 

and 

for r > 1, (2.34) 1 
W - 

ULl(r,O) : 0 = 1 Yl (k )JO(kr )  dk, 

U;(r,O) : 0 = 1 Y2(k) J2(kr) dk, 
00 

where the coupling coefficients c i j (k , z )  are known functions that are given in the 
Appendix. The solution of the integral equations in terms of Y1 and Y2 then directly 
follows from a solution procedure outlined by Sneddon (1966, pp. 129). Finally given 
Yl and Y2, the velocity and pressure fields are found using the analytic expressions 
(2.9)-(2.11) and (2.28)-(2.31). 

2.2. Solution of the dual integral equations 

Tranter (1966) and Sneddon (1966) show how to reduce dual integral equations with 
Bessel function kernels to a system of algebraic equations by representing the unknown 
functions as infinite series of Bessel functions and then imposing an orthogonality 
condition to develop algebraic equations. An alternative procedure for treating the 
system of dual integral equations is described by Davis (1991,1993). Here, following 
Sneddon's analysis, we represent the functions ( !Pi} using an expansion in Bessel 
functions having constant complex-valued weights al,  and azrn : 

00 

~ l ( k )  = k'-' C a l m ~ 2 m + f i ( k ) ,  

~ 2 ( k )  = k'-' C a 2 m ~ 2 m + 2 + B ( k ) .  (2.36) 

By construction, these expansions satisfy (2.34) for r > 1. /? is a parameter which 
can be chosen to facilitate convergence of integrals and is discussed below. Tranter's 
method is completed in four steps: (i) substitute the expansions for (Yi(k)} into (2.33); 
(ii) multiply by r " + l ( l  - r2)fi-l Fn(p + v, v + 1 ; r2 )  where Fn is a Jacobi polynomial 
and v = 0 is used for the equation with Jo and v = 2 is used with J2; (iii) integrate 
the equations from r = 0 -+ 1; (iv) use the identities (e.g. Magnus, Oberhettinger & 
Soni 1966) 

(2.35) 
m=O 

00 

m=O 

and 



Transverse motion of a disk 305 

These steps reduce the integral equations to an infinite set of complex-valued algebraic 
equations relating the coefficients {aim, ~ 2 m )  : 

for n = 0,1,2.  .-, where r(p) is the Gamma function and where Qij(n, m) denotes the 
nm-component of a second rank submatrix: 

Gij(n, m) = k’-2p cij(k, z = 0) Jzm+p(k) Jzn+p(k) dk. (2.40) 

The hydrodynamic force I; = (Fx,  Fy,  F,) and torque L = (L,, Ly, L,) acting on the 
disk are calculated by integrating the surface tractions. The azimuthal integration is 
straightforward to evaluate using expressions (2.9)-(2.11) for u and p and leads to 

4y 

Of 

F, + iFy = 271 1’ r UL,I dr, F, = 0, (2.41) 
0- 

and 
1 Of 

L , - i L y = 2 n i i  r2(-.P+2W’)1 0- dr, L,=O.  (2.42) 

Substituting the Bessel function expansions (2.35)-(2.36) into the expression for the 
force (2.41) and evaluating the integral, we find that only the first term yields a 
non-zero contribution. The hydrodynamic force is thus given by 

(2.43) 

O+ Of 
This result uses ULll0- = 2U_l(r,z = 0) and ( - P + 2W’) lo- = 0. 

The numerical solution of the linear system represented by equations (2.39) and 
(2.40) is straightforward. The integrals Qij(n,rn) forming the elements of the matrix 
involve products of Bessel functions. An efficient quadrature scheme for integrands 
involving products of Bessel functions was developed by Lucas (1995) and is used to 
evaluate these integrals to a prescribed accuracy (typically with absolute and relative 
errors less than The linear system is solved using a standard IMSL routine 
(DLSACG) to determine the expansion weights {q,,,, a2m). 

The value of p affects the number of terms required in the expansions (2.35)- 
(2.36) to achieve a prescribed accuracy. As noted by Vedensky & Ungarish (1994) 
and Ungarish & Vadensky (1995), the ‘correct’ p is that value which captures the 
behaviour of the stress singularity near the disk edge. Based on the Y = 0 analysis, 
one would thus take p = 1/2. We see this fact borne out in table 4, in which 
values of the velocity field at a point (r,e,z) = (0.5,0,0) on the disk surface and 
the hydrodynamic force are calculated using (2.35)-(2.36) and compared for various 
values of p. The actual velocity at this point is (ur, ue) = (1,O). Table 5 demonstrates 
the effects of the expansion truncation on the hydrodynamic force. Keeping N = 15 
terms in the expansions ensures less than a 0.1% error in the hydrodynamic force, 
even when the less than optimal value of p = 1.0 is taken. The numerical results in 
$3 use N = 15 and p = 1.0. 
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B UT Drag Lift 
1.0 0.997 615 13.991 54 -12.491 87 
0.75 0.999 423 13.997 79 -12.500 63 
0.625 0.999 685 14.000 27 -12.502 86 
0.5 1 . 0 0  000 14.000 11 -12.503 62 

TABLE 4. The effect the parameter (equation (2.36)) has on the calculated velocity and hydro- 
dynamic force. The Taylor number F = 500 and the truncation order N = 15. The velocity is 
evaluated at a point on the disk surface (r ,B,z)  = (0.5,0,0) and can be compared to the actual 
value ur = 1. 

Y = l  F = 500 F =  104 

N Drag Lift Drag Lift Drag Lift 
5 1.448 -0.3908 13.914 -12.444 59.520 -57.909 
10 1.452 -0.3925 13.974 -12.480 59.642 -57.905 
15 1.453 -0.3929 13.991 -12.491 59.700 -57.932 
20 1.453 -0.3931 13.993 -12.496 59.723 -57.949 
25 1.453 -0.3932 13.999 -12.499 59.734 -57.958 

TABLE 5. Convergence of the non-dimensional hydrodynamic force (drag and lift) for Y = 1, 500 
and lo4 as a function of the truncation order N ;  fi = 1.0. 

3. Results 
This section discusses the force and velocity fields associated with the transverse 

translation of a disk edgewise through an unbounded rotating fluid. We first describe 
the hydrodynamic force as a function of the Taylor number and then examine in 
detail the velocity field with particular attention given to the limit F >> 1. 

For small Taylor numbers F << 1, the fluid motion appears qualitatively to be a 
Stokes flow with a superimposed swirl. For large Taylor numbers, F >> 1, the flow 
features a thin Ekman boundary layer adjacent to the disk and a weak secondary 
flow outside the Ekman layer (observed from a reference frame in which the disk 
is stationary). The secondary flows consist of two counter-rotating eddies aligned 
parallel to the rotation axis and extending into the far field. The velocity magnitudes 
away from the immediate vicinity of the disk are small, typically 1-2% of the disk 
speed when F = 500. The Taylor blocking phenomenon does not occur; that is, a 
column of fluid does not move with the translating disk, although the presence of 
background rotation is nevertheless evident. 

3.1. Ekman layer near a rigid planar wall 
It is useful to first consider the disturbance flow, governed by the linearized rotating 
equations, created by a translating rigid plate of infinite extent aligned perpendicular 
to the rotation axis. This model problem captures many of the features of disk 
motion at high Taylor numbers and is a classical problem in rotating fluid dynamics 
which is analysed, for example, in Batchelor (1967, $4.4). The plate is located in the 
z = 0 plane, perpendicular to the rotation axis, and the fluid extends into the region 
z > 0. It is common to assume that far away from the plate, a constant pressure 
gradient along the y-direction creates a uniform, unidirectional flow in the x-direction 
as prescribed by the geostrophic equation. However, here it is more appropriate to 
suppose that the plate translates in the x-direction with speed U and the far-field 
fluid is quiescent. Near the plate, the magnitude of the Coriolis force is comparable to 
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the viscous force, velocity field variations occur within an Ekman layer of thickness 
6 = ( v / Q ) ' / ~  adjoining the plate, and the velocity field is 

" >  ( 6  6 
Z 

(ux,uy,uz) = Ue-'/' cos -, -sin -, O . 

The boundary layer thickness, which may be defined as the height where the velocity 
field falls to 1% of the imposed plate speed U ,  is located at Z B L / ~  NN 4.1. The viscous 
stresses tangent to the plate surface (z = 0) created by this flow are given by 

Hence the hydrodynamic force, which resists motion of the plate, is directed at an 
angle of 135" measured clockwise from the translation direction. The net volume flux, 
per unit width, in the Ekman layer is 

Thus there is a net volume flux directed 45" clockwise to the direction in which the 
plate is translating. 

We use these results for a translating infinite plate to interpret the velocity field and 
traction created by the edgewise translation of a disk at high Taylor numbers. For a 
disk of radius a, a boundary layer of thickness S/a  = O(F-1'2) develops. In terms 
of this boundary layer length scale, the disk centre is far from the disk edge and we 
anticipate that the flow features near the disk centre are similar to those above an 
unbounded plate. The drag and lift on the disk are estimated by taking the stress 
distribution on the disk to be the viscous stresses of the infinite-plate solution, which 
may integrated over the disk surface to obtain the dimensional hydrodynamic force 
F :  

F = -2npU~aY'/~ (ex + ey) .  (3.4) 

Thus the viscous force resisting translation of the disk is proportional to F1/2 and 
acts in a direction 135" measured clockwise from the translation direction. 

3.2. Hydrodynamic forces 
The hydrodynamic force on the disk may be resolved into components anti-parallel 
to the translation direction (drag) and perpendicular to the translation and rotation 
axes (lift). In the problem studied here, the disk translates in the x-direction through 
a fluid in solid-body rotation about the z-axis, and creates a drag force in the 
negative x-direction and a lift in the negative y-direction. Equation (3.4) describing 
the high Taylor number limit demonstrates this response. At zero Taylor number, 
the dimensional drag reduces to the Stokes drag on a disk 32Upa/3 and the lift is 
identically zero. 

Figure 3 shows the numerically determined hydrodynamic force (drag and lift), 
non-dimensionalised with respect to the Stokes drag, over a range of Taylor numbers 
lo-' < F < lo5. The solid curve displays the drag and the dashed curve displays 
the lift. The numerical solution indicates that the drag and lift scale as F'I2 for 
large Taylor numbers, a scaling which is consistent with the viscous stresses created 
in the Ekman layer adjoining an infinite plate. At small Taylor numbers, the non- 
dimensional drag approaches one, and the lift approaches zero. 
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lo3 . . . , .  . . I .  . . , .  . . , .  . .  
Drag - 

Y 
FIGURE 3. The dimensionless hydrodynamic force on a disk translating perpendicular to the rotation 
axis. The drag is in the opposite direction of the imposed velocity; the lift is perpendicular to the 
velocity/rotation directions. Also shown are the estimates for the drag and lift that are given by 
equation (3.5). 

A simple formula for the drag and lift, valid for all Taylor numbers, combines the 
high Taylor number estimates given by (3.4) and the Stokes flow result to yield the 
non-dimensional estimates for the drag F, and lift Fy,  

37c 
- = -  (1+ 16Y1/2) and - 
3213 3213 16 

F y  = --f1/2, FX 3n 
(3.5) 

which are also presented in figure 3. These simple formulae are within 10% of the 
numerically determined values of the drag F, for all 9- and the lift Fy for F > 100. 
Moreover, the formulae become more accurate at higher Taylor numbers: the drag 
result (3.5) is accurate to within 1% for Y > 1000, and the lift to within 1% for 
9- > 50000. 

We are thus led to propose an estimate for the hydrodynamic force created by 
a disk undergoing arbitrary translational motion U ,  provided the disk face remains 
perpendicular to the rotation axis. Using the results presented in Tanzosh & Stone 
(1994, equation 4.3; see also Vedensky & Ungarish 1994) for the drag on an axisym- 
metric disk translating parallel to the rotation axis, and equation (3.5) given above, 
the non-dimensional hydrodynamic force F = ( F x ,  Fy, Fz )  can be estimated for any 
Taylor number using 

0 

0 

1 
* U .  (3.6) 
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The accuracy of this equation for in-plane motion is described above. For broadside 
motion, this estimate is within 7% of the numerically determined exact results 
presented by Vedensky & Ungarish (1994). These hydrodynamic force estimates 
provide an uppr : bound for the numerically determined results. 

The high Tay or number scalings for the drag and lift on a disk translating edgewise 
along a plane pLrpendicular to the rotation axis are a consequence of viscous boundary 
layers of thickness 0(F-'l2) generating viscous forces O(F112). In contrast, the drag 
on a disk translating broadside scales as F in the high Taylor number limit since the 
dominant resistance arises from the O ( F )  geostrophic pressure difference fore and 
aft of the particle. 

The disk (of zero thickness) translating edgewise does not create the usual Taylor 
column, as we illustrate in 553.3-3.5, and would be expected to have a smaller drag 
than a comparable body of a finite thickness, which creates a Taylor column. For 
comparison, we provide the low and high Taylor number asymptotic estimates for the 
hydrodynamic force on a translating sphere. The low Taylor number approximation 
(Herron et al. 1975; Childress 1964) is 

1" - = -y 
671 

-, 

0 
4.n2 - - 16.n 

9( 16 + n2) 9( 16 + n2) 

4.n2 16.n 0 .U for F >  1. 
9( 16 + .n2) 9( 16 + n2) 

8 - 
- 9.n - 

0 0 

The high Taylor number estimates of the non-dimensional drag on a disk and sphere 
translating parallel to the rotation axis are identical and are attributable to the 
geostrophic pressure differences fore and aft of the particle. The shape of the particle 
is unimportant since the equatorial radius determines the dominant contribution to 
the drag. However, the shape is important when the particle translates perpendicular 
to the rotation axis. For a disk of zero thickness, the hydrodynamic force scales 
as Y1/2 owing to viscous stresses, whereas for the sphere, the forces scale as F 
which appears to be related to the formation of a Taylor column accompanying the 
particle. It is tempting to combine (3.7) and (3.8) in a manner similar to (3.6), but we 
currently lack experimental or numerical evidence for justifying such a claim. We are 
attempting to verify this conjecture by using the boundary integral method developed 
by Tanzosh & Stone (1994) to investigate the transverse translation of a rigid sphere. 

3.3. Velocity in the plane of the disk 
Figure 4 shows the two components of the velocity field in the plane of the translat- 
ing disk ( z  = 0) as a function of position r along the direction of motion 
(0 = 0). As the Taylor number approaches zero, the velocity field approaches the 
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FIGURE 4. The velocity components u,(r,B = 0 , z  = 0) and u,(r,B = 0,z = 0) in the plane of the 
disk along the direction of translation. The disk occupies the region r < 1 and translates with 
unit velocity (ux ,  uy )  = (1,O). As T -+ 0, the velocity approaches the Stokes flow result given by 
equation (3.9). For T -+ co, the velocity component u, rapidly decays outside the disk edge; the 
component uy develops a spiked structure with magnitude scaling as U ~ / F - ~ / ' ,  which agrees with 
the asymptotic result of Moore & Saffman, equation (3.10), shown by the solid curve. 

Stokes flow result 

+ sin-' (t) 1, 2 (9 - 1)1/2 [ 3r2 
ux(r ,  6 = 0, z = 0)  = - 

71 

UJY, 0 = 0,z = 0)  = 0 (F = 0) .  (3.9) 

As the Taylor number increases, the gradient of the velocity field changes rapidly in 
the vicinity of the disk edge. The component u, approaches a step function, with 
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only a minimal flow disturbance exterior to the disk edge. This feature is consistent 
with the geostrophic flow limit for which large velocity gradients occur in narrow 
viscous shear layers. Also, with increasing Taylor number, the component uy develops 
a narrow spiked structure over the edge of the disk. Moore & Saffman's (1969~) 
analysis of a disk translating through an unbounded fluid when F >> 1 also suggests 
a similar spike-like flow structure. For example, Moore & Saffman's equation (6.7) 
describing the velocity component uy in the z = 0 plane can be shown to reduce to 

6" k J l (k)  [Jo(kr) - J2(kr) dk for F -+ 00. (3.10) uJr ,  13 = 0, z = 0) = ___ 4 ~ ~ 2  1 
The numerical evaluation of this result is included in figure 4(b) which plots the 

scaled velocity uyY1'2 versus position r for various Taylor numbers. The velocity 
fields determined here are in good agreement with this asymptotic result of Moore 
& Saffman, though, as a referee indicated, Moore & Saffman's result is singular as 
r -+ 1+ since in their analysis an O(F-1/2 x F-1/2) region at the disk edge is replaced 
by a singularity. 

The slight wobbles in the velocity field along the disk surface ( r  < 1) result from 
truncating the Bessel function expansions in $2. Increasing the order of the expansion 
decreases this numerical error and, in general, calculating the velocity to a given 
accuracy near the disk surface requires more terms than for a position far from the 
disk. 

3.4. Velocity on the centreline (F >> 1) 
Figures 5 and 6 present the velocity components, ux and uy, calculated at axial z-  
positions along the centreline ( r  = 0), for four values of the Taylor number between 
100 d F < 5000; the axial velocity component u, is identically zero along r = 0 
based on the symmetry of the flow field. Different characteristics of the velocity field 
inside/outside the Ekman layer become apparent by introducing two distinct length 
scales. Recall that the boundary layer thickness ZBL = 4F-1/2 was previously defined 
as the height where the velocity falls to 1% of the boundary speed. 

Outside the Ekman layer (z > 4F- l j2 ) ,  the axial distance z is scaled by F and the 
magnitude of the velocities by F-'i2 (see figure 5).  This scaling, which is consistent 
with a weak viscous decay of the disturbance flow fields in rotating unbounded flows 
(Moore & Saffman 1969u), succeeds in collapsing the velocity profiles. The magnitudes 
of the two velocity components are approximately the same luyl = Iu,I = O(F-1/2). 
We observe that both velocity components undergo slight increases in magnitude 
with increasing distance from the edge of the Ekman layer, reaching a maximum at a 
scaled distance z / F  = 0.040.05. For larger distances, the velocity magnitudes decay 
monotonically. 

The results described above are consistent with Moore & Saffman's (1969~) bound- 
ary layer analysis, valid in the limit F >> 1, of the edgewise motion of a disk through 
an unbounded fluid. Their solution for the u, and uy velocity components has the 
form 

along the centreline ( x , y )  = (0,O) when F >> 1. The numerical evaluation of this 
expression is included in figure 5 and is in good agreement with the analysis presented 
here for arbitrary F. 
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FIGURE 5. The velocity field u,(r = O , z / F )  and uy(r  = O , z / F )  in the region outside the Ekman 
layer. The magnitude of the velocity is scaled by F-*I2; the distance from the disk surface is 
scaled by F, The results, which collapse to a single curve in the high Taylor number limit, are in 
agreement with the asymptotic results of Moore & Saffman (1969~)  given by (3.11). Note that these 
scalings are inappropriate in the Ekman layer near z = 0. 

Within the Ekman layer, the axial scaling z/?-’/~ collapses results for different 
Taylor numbers (figure 6). For sufficiently large Taylor numbers, the Ekman layer 
thickness is small compared with the disk radius &/a = O(S- ’ /2 )  << 1. Hence the 
influence of the disk edge is expected to be small near the disk centre and the fluid 
motion should be similar to that along an infinite plate, equation (3.1). Figure 6 
shows quantitative agreement between the analytical result for the infinite plate and 
the centreline velocity of the finite disk. Only toward the outer edge of the Ekman 
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F’IGURE 6.  The velocity field u,(r = O , Z / Y - ~ ’ ’ )  and uy(r = O,z/Y-’ /*)  for positions along the 
centerline inside the Ekman layer adjacent to the disk surface. The distance from the disk surface 
is scaled by the Ekman layer thickness T-’’’. Also shown is the velocity field corresponding to a 
translating plate as given by equation (3.1). 

Y = 500 - 
1000 ---- 
5000 ..... 
Plate 

-2 -1.6 -1.2 - 0.8 - 0.4 0 

Olx 
FIGURE 7. Angular variation 0 = tan-’(uy/ux) of the in-plane velocity vector along the centreline 
within the Ekman layer. The height above the disk z is scaled by the Ekman length T-”’. Also 
shown is the angular dependence of the in-plane velocity vector for an infinite plate based on the 
velocity fields given in equation (3.1). (The T = 5000 calculation uses N = 25.) 
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FSGURE 8. Plan view through z / S  = 0.01 showing the far field for F = 500. The unit disk is centred 
at the origin and translates along the x-axis from left to right. The top figure shows the velocity field 
in the plane; the bottom figure is a contour plot of the axial velocity field. Two counter-rotating 
eddies centred over the edge of the disk create a net flow directed at an angle f3 = -45" and 135" 
from the translation direction. The eddies are regions of the largest axial flow observed outside the 
Ekman layer (see figures 9 and 10). 

layer do the two results diverge: whereas the velocity field of an infinite plate continues 
to decay exponentially fast with increasing distance from the plate, the velocity field 
for the translating disk has magnitude ux w uy = O ( S - ' / 2 )  which couples to the outer 
region (figure 5). 

The in-plane velocity vectors (ux, uy)  along the centreline rotate through nearly a 
full revolution with increasing height above the disk and have a spiralling structure 
referred to as an Ekman spiral. We define the angular dependence 0 of the in-plane 
velocity vector, measured from the x-axis, according to 

(3.12) 
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FIGURE 9. Plan view showing the far field at a section through z / Y  = 0.05 
for T = 500 (see figure 8). 

For an infinite plate (3.1), the angular dependence varies linearly with distance, 
0 cc -z. Figure 7 shows the calculated angular dependence 0 as a function of the 
distance from the disk Z/F-’’~. Within the Ekman layer the angular dependence 
of the disk closely follows that of the infinite plate. Outside the Ekman layer, the 
direction of the in-plane velocity vector approaches an asymptotic value 0 = 45” 
from the x-axis. This result is related to the finite dimension of the disk creating 
secondary flows which are studied in detail in the next section. 

3.5. Plan view of the velocity (5 >> 1) 
In order to illustrate the three-dimensional nature of the flow field, we show in 
figures 8-14 the in-plane velocity components ux and u,, in horizontal sections of the 
flow, and contour plots showing the axial velocity u,. The views are looking down 
on the disk at planes z = constant, so that the unit disk (Y < 1) is centred at the 
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FIGURE 10. Plan view showing the far field at a section through z / F  = 0.075 
for F = 500 (see figure 8). 

X 

origin and is translating to the right with unit velocity. The x-axis is indicated by the 
solid horizontal line; the angle 6' is measured from the x-axis in the counter-clockwise 
sense. The contour plots of the axial velocity use dark shades to indicate negative 
velocity (down-flow) and light shades to indicated positive velocity (up-flow). 

Figures 8-10 illustrate fluid motion outside the Ekman layers at axial distances 
z = 5,25,37.5 for 9- = 500 or scaled distances z / 5  = 0.01, 0.05, 0.75, respectively. 
Over large portions of the disk, the flow is uniformly directed at an angle 6' = 45" 
from the leading edge (x-axis). This flow is created by two counter-rotating eddies, 
centred over the edge of the disk at angles 6' = -45" and 135" from the x-axis. 
These eddies are regions of relatively large axial flow that move upward near the 
leading edge and downward at the trailing edge. This columnar structure extends 
from the Ekman layer into the far field with only a gradual viscous decay (previously 
quantified in figure 5 )  and broadening of the eddies. For 9- = 500, the axial velocity 
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FIGURE 11. Plan view showing the Ekman layer at a sections through z/Y-~'* w 0.6,1.2 for 
Y = 500. The disk occupies the region r < 1 and moves from left to right. The figures on the left 
shows the in-plane velocity vectors; the figures on the right shows contours of the axial velocity field. 
The velocity vectors along the centreline spiral through nearly a full revolution as distance from 
the disk increases. Regions of net up-flow/down-flow occur over the leading/trailing edge. These 
regions rotate clockwise through 45" and develop into counter-rotating eddies (see figures 12-14.) 

in the centre of the eddy is approximately 2% of the disk speed and remains nearly 
constant in the region ranging from z = 5-37. In general, the magnitude of this 
far-field velocity is O(T-lI2). 

Figures 11-14 show eight horizontal plan-view sections at increasing distances from 
the disk Z/Y-'/~ = 0.6-4.8 which illustrate the complex flow field within the Ekman 
layer: adjacent to the disk, the no-slip condition generates flow in the translation 
direction, whereas outside the Ekman layer, two counter-rotating regions cause a net 
flow at 45" to the translation direction (figures 8-10). 

The in-plane velocity vectors near the centre of the disk spiral clockwise through 
almost a full revolution with increasing distance from the disk, while near the 
disk edge, they organize into counter-rotating eddies as the height above the disk 
increases. Contour plots show these eddies to be centres of axial flow into and out 
of the horizontal plane. The first section above the disk at Z/T-~/~ = 0.6 shows a 
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FIGURE 12. Plan view showing the Ekman layer at sections through 
z / . T ' / *  = 1.8,2.4 for 9 = 500 (see figure 11). 

strong up-flow over the leading edge and a down-flow over the trailing edge of the 
disk. In subsequent plane sections (moving away from the disk), these regions of axial 
flow rotate clockwise through an angle of 45". This net rotation is a consequence 
of the Coriolis force -52 A u causing fluid elements with a radial component to turn 
clockwise. 

4. Discussion 
We conclude our discussion of the transverse translation of a rigid disk with a 

few general observations. Figure 15 is a schematic illustration of the instantaneous 
flow field generated by a disk translating perpendicular to the rotation axis of a fluid 
in solid-body rotation. For 9 << 1, the flow appears as a perturbation of a Stokes 
flow. The velocity field is created by viscous stresses dragging fluid along with the 
translating disk, so that streamlines diverge in front of the translating particle and 
converge behind it. Such a viscous flow decays in the far field as O(Ixl-'). 

In contrast, for f >> 1 the Taylor-Proudman constraint, strictly valid for a 
geostrophic flow (no viscous effects), strongly influences the motion. In order to 
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FIGURE 13. Plan view showing the Ekman layer at sections through 
z/Y-' /~ = 3.0,3.6 for Y = 500 (see figure 11). 

eliminate velocity gradients along the direction of the rotation axis, the largest O( 1) 
velocities are compressed into thin O ( F - 1 / 2 )  Ekman boundary layers along the disk 
surface. The flow within the Ekman boundary layers can be understood by considering 
an infinite plate translating perpendicular to the rotation axis. Figures 11-14 illustrate 
the Ekman spiral. As equation (3.3) demonstrates, the translating plate produces a net 
in-plane volume flux which is directed 45" clockwise from the translation direction. 
This flow feature is evident in figure 6. 

The background rotation inhibits radially directed fluid motion present in the low 
Taylor number flows, and instead tends to cause fluid particles to move parallel to 
the rotation axis, as evidenced in the narrow up-flow and down-flow regions that 
accompany the translating disk. This weak secondary flow outside the Ekman layer 
is composed of two counter-rotating eddies centred over the edge of the disk and 
extending in a column parallel to the rotation axis as shown in figure 15. The counter- 
rotating eddies act together to generate a net in-plane flow directed at an angle of 45" 
counter-clockwise to the direction of disk translation. This secondary flow is weak, 
but persists for large axial distances with nearly a constant magnitudes JurI = l u ~ l  = 
Iu,I = O(F-1/2) over distances z = O ( F ) .  Thus, there is a columnar character to the 
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FIGURE 14. Plan view showing the Ekman layer at sections through 
Z/T-’’~ = 4.2,4.8 for 9- = 500 (see figure 11). 

flow, though not the classic Taylor column (Moore & Saffman 1969~). In general, 
for F > 500 Moore & Saffman’s (1969~) asymptotic analysis quantitatively describes 
some of the detailed flow features. 

The structure of the counter-rotating eddies is suggestive of the $-shear layer 
described by Moore & Saffman (19694. In their analysis, a thin layer, which extends 
parallel to the rotation axis and is centred over the disk edge, transfers fluid in the 
axial direction from a source located on the disk edge. This source is fed by the 
Ekman layer on the disk surface. Here the two counter-rotating eddies perform the 
function of the :-layer. We can now examine how the thickness of this eddy changes 
with Taylor number by considering the axial velocity at a constant height through a 
radial slice passing through the centre of the eddy (e.g. 0 < r < 2,8 = -7c/4, z = 1). 
We have numerically verified that the thickness over which the velocity exceeds a 
certain threshold (e.g. 50% of the maximum axial velocity) scales as F-1’3 and this 
scale is indicated in figure 15. 

Finally, based upon the viscous decay of the disturbance flow field, we should 
expect the unbounded flow approximation to be valid provided horizontal boundaries 
are located at distances greater than O ( a F )  from the disk. 
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. ,^ Side 
view 

r>> 1 

FIGURE 15. Velocity field created by a unit disk translating perpendicular to the rotation axis for 
<< 1 and T >> 1. For Y << 1, the flow field appears as a perturbation of a Stokes flow. As 

the Taylor number increases, the O(1) disturbance is confined to a thin O(T-’’2) Ekman boundary 
layer. Radial disturbances are redirected upward and downward along the axial direction, creating 
a secondary flow which consists of two counter-rotating eddies. The eddies, which are connected 
through the Ekman layers adjacent to the disk surface, generate a net volume flux away from the 
disk over the leading edge and toward the disk over the trailing edge. The two counter-rotating 
eddies create a weak net flow O(9-l’’) directed 45” counter-clockwise from the direction in which 
the disk is translating. 
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Appendix. Details of the dual integral equation formulation 
This Appendix contains some of the intermediate steps in the derivation of the 

dual integral constraints shown in $2. The coupling coefficients ci j (k ,  z )  result from 
regrouping the undetermined functions {A l (k ) ,  Az(k),  A3(k)} in the dual integral 
equations into a form more suitable for solution by Tranter’s method. 

Based on the expressions for VV1 and U1’ in equations (2.30) and (2.31)’ we find it 
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convenient to define 

S? [ (s? - k 2 )  + i ~ ]  S? [ (s? - k 2 )  - i 2 ~ ]  
%j(k)  = and 9 j ( k )  = . (A1) 

(Sj” - k 2 )  (Sj” - k 2 )  

(Note that Bi is not the Jacobi polynomial utilized briefly in 52.) Thus equations 
(2.30) and (2.31) can be expressed 

where we recall that +Sj(k)  ( j  = 1,2,3) are the six roots of the characteristic equation 

(Sj - k2)3 + 4F2$ = 0 with Re { S j )  >, 0 . (A 4) 
This equation admits one pair of real roots labelled +_Sl and two pairs of complex- 
conjugate roots kS2 and kS3 = &%. 

The condition W ( r , z  = 0) = 0 for all I and (2.28) result in the constraint Al + 
A2 + A3 = 0. Using this constraint in (A 2) and (A 3), we can redefine the unknowns 
{Ai(k)> by introducing Y l ( k )  and Y y ~ ( k ) :  

Y1 = ( 9 2  - 9 1 ) A ~  + ( 9 3  - 9jl)A3 and Y 2  = ( 9 2  - 91)Az + ( 9 3  - 91)A3, (A 5 )  

from which it follows that 
4 9 3  - 92)Y1+ ( 9 3  - 92)Y2 

( 9 3  - 9 1 ) ’ y 1 -  ( 9 3  - 9 1 w 2  

4 9 - 2  - 9-l)YyI + ( 9 2  - 91)Y2 

A 
A1 = 9 

A 
A2 = 7 

A 
A3 = 9 

where 

Next we can define the coupling coefficients cij using the definitions of the complex 
functions Y l ( k )  and Y 2 ( k )  to rearrange the expressions for U-1 and U-l given in 
(2.30) and (2.31). Thus 

where the coupling coefficients ci j (k ,z)  are given by 
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The unknown functions Yl(k)  and Y2(k) are specified by the boundary conditions 
in the plane z = 0 as described in 52. 

We can simplify the expressions derived in this section by using properties of the 
roots {S j ) .  We have identified the roots so that S1 is a real-valued function and 
S2,S3 = T2 form complex-conjugate pairs. (We keep only the three roots for which 
Re{Sj} 2 0 so that the coupling coefficients cij decay in the upper half-space z > 0.) 
Thus it follows that 9l = E, 92 = E, and 9 3  = E. Because of this result, 
we see that A(k) is a real-valued function and the coupling coefficients are related 
complex-conjugate pairs for which c22(k, z) = Zll(k, z) and c2l(k, z) = c12(k, z). 
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